Фотоника: электроника будущего
24 февраля 2022
Если XIX век называют веком пара, а прошлый век признан веком электроники, то нынешнее столетие – время фотоники. Именно наши ученые стали основоположниками фундамента фотоники: Басов и Прохоров создали первые мазеры и получили Нобелевскую премию, а другой Нобелевский лауреат – Жорес Алферов – изобрел светодиоды на полупроводниковых гетероструктурах. Несмотря на последующее отставание, сегодня Россия развивается достаточно быстрыми шагами в этой сфере.
Холдинг «Швабе» Госкорпорации Ростех является системным интегратором в области фотоники. В его составе работает целый кластер по производству оптических материалов: стекла, керамики, кристаллов. Другой кластер холдинга занимается созданием лазеров, которые являются суперосновой фотоники. Еще одно направление – это энергосберегающая светотехника с ее лазерными светодиодами. Об истории фотоники и успехах российских ученых – в нашем материале.
Как фотон потеснил электрон
С начала XIX века люди используют явление электричества для различных целей – от передачи энергии и информации до научных опытов и создания произведений искусства. Сегодня мы не можем представить свою жизнь без электричества и электроприборов, но на смену электронике уверенно движется молодая наука − фотоника.
В поисках альтернативы электронике для миниатюризации устройств и увеличения скорости передачи данных ученые давно обратили внимание на свет. Частицы света – фотоны – самые элементарные частицы, способные переносить электромагнитное взаимодействие. В отличие от электронов они не имеют массы и заряда, а значит, двигаются быстрее – со скоростью света, а также не подвержены воздействию внешних электромагнитных полей. Кроме того, фотоны обладают гораздо большей дальностью передачи и большей шириной полосы пропускания сигнала. Термин «фотон» в 1926 году ввел в употребление американский физикохимик Гилберт Льюис.
Первым большим шагом к появлению новой науки фотоники стало изобретение лазера в 1958–1960-х годах. В 1964 году за работы в квантовой физике, которые привели к созданию первых мазеров и лазеров, Нобелевскую премию получили советские физики Александр Прохоров и Николай Басов, а также их американский коллега Чарльз Таунс. Это изобретение открыло новую страницу в изучении взаимодействия света с веществом и превращения одной энергии в другую. Лазеры прочно вошли в нашу жизнь, проникнув в медицину, промышленность, науку, военное дело, экологию и многие другие сферы.
Россия − родина фотоники
Само понятие «фотоника» родилось в нашей стране. Его придумал физикохимик, академик Александр Теренин, занимавшийся в Государственном оптическом институте им. С.И. Вавилова (сегодня входит в холдинг «Швабе») вопросами фотосинтеза. Свой научный труд 1967 года он назвал «Фотоника молекул красителей». Фотонику Теренин определял как науку, изучающую изменение физических и химических свойств вещества под действием света. Однако в мировое научное сообщество термин вошел гораздо позже, утвердившись уже в 1980-е годы.
Современное понятие фотоники более широкое. С одной стороны, это раздел физики, который изучает фотоны, их генерацию, распространение и определение, а также контроль и управление оптическими сигналами. С другой стороны, это раздел техники, занимающийся прикладными аспектами работы с оптическими сигналами и созданием на их базе разнообразных устройств.
Можно сказать, что к концу XX века фотоника фактически заменила собой оптику, включив в себя квантовую электронику, физику и технику лазеров, квантовую оптику и другие направления, для которых базовым процессом является передача энергии и информации посредством фотонов. Сегодня фотоника является аналогом электроники, только вместо электронов она использует квант электромагнитного поля – фотон.
«Шланг» для света и интернета
Еще одной революционной технологией, закрепившей успехи фотоники и изменившей мир, стало оптическое волокно. Передавать свет и информацию по стеклянному «кабелю» пробовали и раньше, но достичь нужного уровня технологий удалось только в 1970-е годы. Оптоволокно – это канал, состоящий из оптически прозрачного материала, по которому движется свет. Эта технология позволяет передавать информацию на гораздо большие расстояния и с большей скоростью, чем электронные средства связи.
Именно благодаря оптоволокну широкое распространение получил скоростной интернет, создавший подобие нервной системы для всего человечества, где любая информация распространяется практически мгновенно. Скорость передачи данных в оптоволоконных сетях исчисляется терабитами в секунду. Важная особенность оптоволоконных сетей – сложность в перехвате данных. Ежегодно в России прокладывается около 4 млн км оптоволокна.
В передаче информации с помощью света задействованы три базовых процесса: генерация, передача и распознавание. Для генерации используются не простые лампочки, а лазеры и светодиоды. Передача обязательно должна проходить в прозрачной среде, такой как воздух или оптоволокно. А для распознавания используются специальные устройства – фотодетекторы.
Еще одна интересная сторона применения оптоволокна – способность эффективно поглощать свет. Эта особенность может применяться в камуфляже, в создании телескопов и других устройств.
Тихая фотонная революция
Мы находимся в самом начале фотонной революции, хотя фотонные устройства уже давно окружают нас – например, светодиоды или лазерные диоды. Эти устройства легкие, компактные, дешевые, прочные и долгоживущие, выделяют меньше тепла и требуют меньше энергии по сравнению с традиционными источниками света.
Технологии фотоники и устройства, созданные на их основе, шаг за шагом находят все большее распространение в мире. За последние 15 лет мировой рынок фотоники вырос более чем в три раза и по оценкам экспертов к 2025 году достигнет 838 млрд долларов США. Наиболее быстрорастущими секторами применения фотоники являются здравоохранение, информация и связь, а также промышленное производство. Без фотоники невозможна современная армия. Рынок растет как за счет увеличения использования уже известных технологий, так и за счет открытия новых. Новые возможности, которые несет фотоника, сравнимы с революционными результатами электрификации начала XX века.
На старте эры фотоники ученые России были в числе пионеров: наше первенство в квантовой электронике и лазерной технике неоспоримо. И сегодня нам необходимо восстанавливать позиции. По объемам продаж фотоники доля нашей страны в общемировом рынке – менее 1%. При этом в России сохранилась сильнейшая физическая школа, работающая именно в русле фотоники. Обладая большим научным потенциалом, мы пока уступаем другим государствам в коммерческом применении.
Крупнейшим в стране экспертом и системным интегратором в области фотоники является холдинг «Швабе» Госкорпорации Ростех. Входящие в него НИИ «Полюс» им. М.Ф. Стельмаха, Московский завод «САПФИР», НПО «Государственный институт прикладной оптики», Уральский оптико-механический завод имени Э.С. Яламова, НПО «Орион» и другие научные институты и предприятия создают уникальные технологии и продукты на основе фотоники.
Ученые «Швабе» проводят множество фундаментальных и прикладных исследований по различным направлениям фотоники, в результате которых получены значительные достижения в области создания оптико-электронных (телевизионных и тепловизионных) систем, комплексов и аппаратуры наблюдения, прицеливания, разведки и наведения оружия; оптических материалов и элементов, работающих в широкой области спектра, для оптических и оптико-электронных систем; лазерных дальномеров, лазерных целеуказателей-дальномеров, лазерной гироскопии; твердотельных детекторов и фотоприемных устройств на их основе. Благодаря работе предприятий холдинга «Швабе» Россия может в значительной мере обеспечить свои потребности в фотонной технике и предложить миру перспективные разработки.
Источник: https://rostec.ru/news/fotonika-elektronika-budushchego/